On the Borel-cantelli Lemma and Its Generalization
نویسندگان
چکیده
Let {An}
منابع مشابه
Generalizations of Borel-Cantelli Lemma
The Borel-Cantelli Lemma is very important in the probability theory. In this paper, we first describe the general case of the Borel-Cantelli Lemma. The first part of this lemma, assuming convergence and the second part includes divergence and independence assumptions. In the following, we have brought generalizations of the first and second part of this lemma. In most generalizat...
متن کاملThe Dynamical Borel-cantelli Lemma for Interval Maps
Abstract. The dynamical Borel-Cantelli lemma for some interval maps is considered. For expanding maps whose derivative has bounded variation, any sequence of intervals satisfies the dynamical Borel-Cantelli lemma. If a map has an indifferent fixed point, then the dynamical Borel-Cantelli lemma does not hold even in the case that the map has a finite absolutely continuous invariant measure and s...
متن کاملOn the Borel-Cantelli Lemma
In the present note, we propose a new form of the Borel-Cantelli lemma.
متن کاملDynamical Borel-Cantelli lemmas for Gibbs measures
Let T : X 7→ X be a deterministic dynamical system preserving a probability measure μ. A dynamical Borel-Cantelli lemma asserts that for certain sequences of subsets An ⊂ X and μ-almost every point x ∈ X the inclusion Tnx ∈ An holds for infinitely many n. We discuss here systems which are either symbolic (topological) Markov chain or Anosov diffeomorphisms preserving Gibbs measures. We find suf...
متن کاملOn the Application of the Borel-cantelli Lemma
The celebrated Borel-Cantelli lemma asserts that (A) If ~P(E,,) < 00, then P (lim sup Ek) =O; (B) If the events Es are independent and if xP(Ek) = m, then P(lim sup Eh) = 1. In intuitive language P(lim. sup &) is the probability that the events Eh occur “infinitely often” and will be denoted by P(Ek i.0.). This lemma is the basis of all theorems of the strong type in probability theory. Its app...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009